Optica-yasim.xml 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. <?xml version="1.0"?>
  2. <!--
  3. YASim Aerodynamic Model for the OA-7 Optica
  4. Gary Neely aka 'Buckaroo'
  5. Optica FDM version 3
  6. V speeds:
  7. Vr 50 kts (takeoff at 10 deg flaps)
  8. V2 55 kts
  9. Vs 42 kts
  10. Vs0 38 kts
  11. Vno 115
  12. VA 113
  13. Vne 140 kts
  14. Vfe 1-10 deg, 110 kts
  15. 11-50 deg, 85 kts
  16. Ceiling 13,000'
  17. Weight and Balance:
  18. empty 2058
  19. max takeoff and landing 2900 lbs
  20. max zero fuel 2734 lbs
  21. max load 512 lbs (people+baggage)
  22. min load 170 lbs (seated pilot)
  23. max baggage tray load 66 lbs
  24. CG Range (datum is wing leading edge LE):
  25. forward limit 20% MAC, 10.4" aft of datum for all weights
  26. aft limit 32% MAC, 16.6" aft of datum at 2400 lbs
  27. 30% MAC, 15.6" aft of datum at 2900 lbs
  28. chord 1.369 1/2=0.685
  29. x-axis:
  30. wing loc 3.240
  31. LE 2.555
  32. 20% MAC 2.829
  33. 25% MAC 2.900
  34. 30% MAC 2.966
  35. 32% MAC 2.993
  36. solved CG 2.917 @2700lbs
  37. Fuel:
  38. Two tanks at 33 gallons each, 0.8 gallons unusable in each
  39. Fuel is drawn from a selectable tank, both may not be an option
  40. Control Surface Limits:
  41. Up/Down
  42. Flaps -/50
  43. Ailerons 22/12
  44. Elevator 26.5/19
  45. Elevator Trim 20/28
  46. Rudders 25L/25R
  47. Engine (from type cert sheet):
  48. Avco Lycoming IO-540-V4A5D
  49. max power 2700 RPM, 260 C (500 F) CHT, 260 HP
  50. max continuous 2200 RPM, 220 C CHT
  51. max oil press 95 psi
  52. 115 psi (starting, warm-up)
  53. min oil press 55 psi (normal), 25 psi (idling)
  54. fuel press (-2)-35 psi (at engine pump inlet)
  55. 12-45 psi (at injector inlet)
  56. max EGT 850 C
  57. max oil temp 118 C
  58. min oil temp 60 C (continuous)
  59. bore 5.125
  60. stroke 4.375
  61. disp 541.5
  62. comp 8.7:1
  63. weight 383 (dry)
  64. oil max 8 gallons
  65. oil norm 6 gallons
  66. Prop:
  67. Hoffman HO E315
  68. 5 blades, fixed pitch
  69. diameter 47.71", 1.212m(0.606m R)
  70. max RPM 2700
  71. rotation CW from rear
  72. weight 37.4 lbs, 17 kg
  73. moment 6.76, calculated using mean of rod and disk methods
  74. rod (mR^2)/3 * blades = 17*0.367/3*5 = 10.4
  75. disk (mR^2)/2 = 17*0.367/2 = 3.12
  76. YASim solution notes:
  77. Solution results: Iterations: 954
  78. Drag Coefficient: 20.811853
  79. Lift Ratio: 126.860756
  80. Cruise AoA: -4.067267
  81. Tail Incidence: -0.271942
  82. Approach Elevator: -0.839581
  83. CG: x:-2.917, y:0.000, z:0.164
  84. Inertia tensor : 3259.927, -0.000, 645.507
  85. [kg*m^2] -0.000, 4609.323, 0.000
  86. Origo at CG 645.507, 0.000, 7608.934
  87. -->
  88. <airplane mass="2058">
  89. <!--
  90. Approach AoA is a guess, giving something around half the wing's critical AoA. In reality, with full or near-full flaps it's probably significantly more shallow than this. (See wing notes below.)
  91. I don't really know what the top speed of the Optica is with the IO-540; the original Optica used a 150 HP engine giving anemic performance. Production models used 260 or 300 HP engines. The plane was meant for slow and efficient cruise speeds but I know from one flight test report that it could be pushed to Vne. Therefore I use Vne as the top-end.
  92. -->
  93. <approach speed="42" aoa="8" fuel="0.2">
  94. <control-setting axis="/controls/engines/engine[0]/throttle-fdm" value="0.4"/>
  95. <control-setting axis="/controls/engines/engine[0]/mixture" value="1.0"/>
  96. <control-setting axis="/controls/flight/flaps" value="1.0"/>
  97. <control-setting axis="/controls/flight/flaps-fixed" value="0.2"/>
  98. <solve-weight idx="0" weight="250"/>
  99. <solve-weight idx="1" weight="0"/>
  100. <solve-weight idx="2" weight="0"/>
  101. </approach>
  102. <cruise speed="140" alt="5000" fuel="0.6">
  103. <control-setting axis="/controls/engines/engine[0]/throttle-fdm" value="1.0"/>
  104. <control-setting axis="/controls/engines/engine[0]/mixture" value="0.74"/>
  105. <control-setting axis="/controls/flight/flaps" value="0"/>
  106. <control-setting axis="/controls/flight/flaps-fixed" value="0.2"/>
  107. <control-setting axis="/controls/flight/elevator-trim" value="0.16"/>
  108. <solve-weight idx="0" weight="250"/>
  109. <solve-weight idx="1" weight="0"/>
  110. <solve-weight idx="2" weight="0"/>
  111. </cruise>
  112. <cockpit x="-1.5" y="0" z="0.2"/>
  113. <!--
  114. Cabin, an approximation for a duct body for drag, and two booms. Duct width is based on the duct as a torus, using an area based on that of a circle of the outer diameter minus a circle of the inner diameter, and calculating an effective diameter (0.73) based on the result. It's likely a bad guesstimation and its moment will be too small, but better than nothing.
  115. -->
  116. <fuselage ax="0" ay="0" az="-0.03" bx="-5.09" by="0" bz="0.04" width="1.6" taper=".4" midpoint="0.25"/>
  117. <fuselage ax="-2.5" ay="0" az="0.05" bx="-4.3" by="0" bz="0.05" width="0.73" taper="0.2" midpoint="0.5"/>
  118. <fuselage ax="-2.72" ay="1.69" az="-0.01" bx="-7.16" by="1.69" bz="0.32" width="0.31" taper="0.5" midpoint="0.15"/>
  119. <fuselage ax="-2.72" ay="-1.69" az="-0.01" bx="-7.16" by="-1.69" bz="0.32" width="0.31" taper="0.5" midpoint="0.15"/>
  120. <!--
  121. Wing:
  122. I have no numbers for incidence, so I'm using 0. Given the already good view forward, it probably wouldn't need much if any incidence. Also, since the airfoil has such a high lift factor, fast cruise has a significant nose-down attitude which would be exaggerated by incidence.
  123. I have no numbers for twist, so using a generic -3 degrees.
  124. The model uses an older wingtip design. Later versions appear to use a modified Horner tip, which I may re-model in the future. The tips might give a few more inches of effective span due to lateral vortex displacement etc., but I currently don't account for that.
  125. Flaps over 10 deg serve to increase the Optica's angle of descent, ie, bring the nose down for approach. Total full-flap pitch-down should be about 11 degrees from 10 deg flaps to 50 deg flaps. It's difficult to achieve this because YASim does not allow positioning the effects of flap lift/drag or modifying Cm. With no flaps, the sink-rate at 70 kts should be 500 ft/min. With full flaps, this becomes 900 ft/min. Flap drag was set to get something like these numbers, but the FDM has been through many changes since I last flight tested for sink rate so I'm not sure how it fares now.
  126. The airfoil is a GA(W)-1 meant for low-speed, high-lift applications, with a Cl at 0 alpha of about 0.4, 0 Cl at -4.5 alpha, and a Clmax of about 1.6, giving a YASim camber of ~0.25. Max lift occurs at about 16 degrees. Stall should be very gentle and mushy with little tendency to drop a wing, so I set a fairly wide width.
  127. -->
  128. <wing x="-3.235" y="1.866" z="0.06" taper="1" length="4.074" chord="1.369" sweep="0" dihedral="3" incidence="0" camber="0.25" twist="-3.0">
  129. <stall aoa="16" width="10" peak="1.5"/>
  130. <flap0 start="0" end="0.5" lift="1.6" drag="1.75"/>
  131. <flap1 start="0.5" end="1.0" lift="1.2" drag="1.2"/>
  132. <control-input axis="/controls/flight/flaps" control="FLAP0"/>
  133. <control-input axis="/controls/flight/aileron" control="FLAP1" split="true"/>
  134. <control-input axis="/controls/flight/aileron-trim" control="FLAP1" split="true"/>
  135. <control-output control="FLAP0" prop="/surface-positions/flap-pos-norm"/>
  136. <control-output control="FLAP1" side="left" prop="/surface-positions/left-aileron-pos-norm"/>
  137. <control-output control="FLAP1" side="right" prop="/surface-positions/right-aileron-pos-norm"/>
  138. <control-speed control="FLAP0" transition-time="10"/>
  139. </wing>
  140. <!--
  141. Wing section inboard of booms. Inboard flaps are fixed at 10 degrees. As this section is optimized for lift, I have substantially reduced the drag component of 'flaps'.
  142. -->
  143. <mstab x="-3.341" y="0.84" z="0.06" taper="1" length="1.043" chord="1.583" sweep="0" dihedral="0" incidence="0" camber="0.25" twist="0">
  144. <stall aoa="16" width="10" peak="1.5"/>
  145. <flap0 start="0" end="1" lift="1.6" drag="1.2"/>
  146. <control-input axis="/controls/flight/flaps-fixed" control="FLAP0"/>
  147. <control-speed control="FLAP0" transition-time="5"/>
  148. </mstab>
  149. <!--
  150. Nothing fancy here. Camber adjusted to help achieve a reasonable tail incidence. Elevator lift is heavier than I would usually advocate, but since the payload is far forward compared to the CG it needs a strong positive response for the variety of loads.
  151. -->
  152. <hstab x="-7.361" y="0" z="1.453" taper="1" length="1.161" chord="1.153" sweep="0" camber="0.05">
  153. <stall aoa="18" width="4" peak="1.5"/>
  154. <flap0 start="0" end="1" lift="1.83" drag="1.3"/>
  155. <control-input axis="/controls/flight/elevator" control="FLAP0"/>
  156. <control-input axis="/controls/flight/elevator-trim" control="FLAP0"/>
  157. <control-output control="FLAP0" prop="/surface-positions/elevator-pos-norm"/>
  158. </hstab>
  159. <!--
  160. Lift values adjusted to give a reasonable slip ability, but may need more tuning.
  161. The model currently uses the older design with no vstab root extensions.
  162. -->
  163. <vstab x="-7.3" y="1.68" z="0.133" taper="0.73" length="1.257" chord="1.587" sweep="3" dihedral="109">
  164. <stall aoa="16" width="4" peak="1.5"/>
  165. <flap0 start="0" end="1" lift="1.35" drag="1.3"/>
  166. <control-input axis="/controls/flight/rudder" control="FLAP0" invert="true"/>
  167. <control-input axis="/controls/flight/rudder-trim" control="FLAP0" invert="true"/>
  168. <control-output control="FLAP0" prop="/surface-positions/rudder-pos-norm" min="1" max="-1"/>
  169. </vstab>
  170. <vstab x="-7.3" y="-1.68" z="0.133" taper="0.73" length="1.257" chord="1.587" sweep="3" dihedral="71">
  171. <stall aoa="16" width="4" peak="1.5"/>
  172. <flap0 start="0" end="1" lift="1.35" drag="1.3"/>
  173. <control-input axis="/controls/flight/rudder" control="FLAP0" invert="true"/>
  174. <control-input axis="/controls/flight/rudder-trim" control="FLAP0" invert="true"/>
  175. <control-output control="FLAP0" prop="/surface-positions/rudder-pos-norm" min="1" max="-1"/>
  176. </vstab>
  177. <!--
  178. Mass assuming engine dry weight + prop weight + 42 lbs of oil (6 gals at 7 lbs).
  179. Cruise speed is adjusted for reasonable performance.
  180. Thrust direction gives a slight upthrust vector (3 deg) due to downcurved trailing edge of duct.
  181. -->
  182. <propeller x="-2.40" y="0" z="0.0"
  183. radius="0.606"
  184. mass="462.4"
  185. moment="6.76"
  186. cruise-power="156"
  187. cruise-rpm="1900"
  188. cruise-speed="130"
  189. cruise-alt="5000"
  190. takeoff-power="260"
  191. takeoff-rpm="2700">
  192. <piston-engine
  193. eng-rpm="2700"
  194. eng-power="260"
  195. alt="0"
  196. displacement="541.5"
  197. compression="8.7"/>
  198. <actionpt x="-3.6" y="0" z="0.04"/>
  199. <dir x="0.9986" y="0.0" z="0.05234" />
  200. <control-input axis="/controls/engines/engine[0]/throttle-fdm" control="THROTTLE"/>
  201. <control-input axis="/controls/engines/engine[0]/starter" control="STARTER"/>
  202. <control-input axis="/controls/engines/engine[0]/magnetos" control="MAGNETOS"/>
  203. <control-input axis="/controls/engines/engine[0]/mixture" control="MIXTURE"/>
  204. </propeller>
  205. <!--
  206. Conventional trike arrangement with the nose wheel offset slightly.
  207. -->
  208. <gear x="-0.73" y="0.2" z="-1.19"
  209. compression="0.1"
  210. dfric="0.3"
  211. sfric="0.5">
  212. <control-input axis="/controls/flight/rudder" control="STEER"
  213. src0="-1.0" src1="1.0"
  214. dst0="-0.1" dst1="0.1"/>
  215. </gear>
  216. <gear x="-3.38" y="1.70" z="-1.14"
  217. compression="0.2"
  218. dfric="0.6"
  219. sfric="0.7">
  220. <control-input axis="/controls/gear/brake-left" control="BRAKE" split="true"/>
  221. <control-input axis="/controls/gear/brake-parking" control="BRAKE" split="true"/>
  222. </gear>
  223. <gear x="-3.38" y="-1.70" z="-1.14"
  224. compression="0.2"
  225. dfric="0.6"
  226. sfric="0.7">
  227. <control-input axis="/controls/gear/brake-right" control="BRAKE" split="true"/>
  228. <control-input axis="/controls/gear/brake-parking" control="BRAKE" split="true"/>
  229. </gear>
  230. <!--
  231. Fuel tanks are located in the outboard wings forward of the main spar and laterally
  232. positioned ahead of the flaps.
  233. -->
  234. <tank x="-2.68" y="2.88" z="0.12" capacity="198"/>
  235. <tank x="-2.68" y="-2.88" z="0.12" capacity="198"/>
  236. <!--
  237. The real Optica is very sensitive to weight and balance. Single-pilot operation requires significant ballast in the nose. In many photos there appears to be a rack of weights fitted just forward of the instrumentation pylon. The tailbooms contain an adjustable sliding weight that can fine-tune balance on the ground. This should be reflected by a change in ballast position, but currently YASim doesn't support property-driven ballast, so I'm using a weight.
  238. -->
  239. <ballast x="-1" y="0" z="0" mass="375"/>
  240. <weight x="-1" y="0" z="0" mass-prop="/sim/weight[0]/weight-lb"/> <!-- crew -->
  241. <weight x="-0.2" y="0" z="0" mass-prop="/sim/weight[1]/weight-lb"/> <!-- nose weights -->
  242. <weight x="-7" y="0" z="0" mass-prop="/sim/weight[2]/weight-lb"/> <!-- tail sliding balance weight -->
  243. </airplane>